大样品的缺陷检测成像与分析
Park NX20拥有业界便捷的设计和自动界面,让你在使用时无需花费大量的时间和精力,也不用为此而时时不停的指导初学者。借助这一系列特点,您可以更加专注于解决更为重大的问题,并为客户提供及时且富有洞察力的失效分析报告。

Park NX20可快速帮助客户找到产品失效的原因,并帮助客户制定出更多具有创意的解决方案。高精密度可为用户带来高分辨率数据,让用户能够更加专注于工作。与此同时,非接触扫描模式让探针针尖更锋利、更耐用,无需为频繁更换探针而耗费大量的时间和金钱。
Park NX20拥有业界便捷的设计和自动界面,让你在使用时无需花费大量的时间和精力,也不用为此而时时不停的指导初学者。借助这一系列特点,您可以更加专注于解决更为重大的问题,并为客户提供及时且富有洞察力的失效分析报告。
XY扫描仪包括对称的二维弯曲结构和高力量压电堆叠,提供高度正交运动以及微小的平面外运动,同时具备高响应性,非常适合在纳米尺度下进行精准样品扫描。
标准的Z扫描仪由高力量压电堆叠驱动,并由弯曲结构引导,具有超过9 kHz(通常为10.5 kHz)的高谐振频率,以及超过48 mm/sec的Z伺服速度,能够提供精准的反馈。可选的长扫描范围Z扫描仪可以将Z扫描范围从15µm扩展至30µm。
行业前沿的低噪声Z探测器替代了施加的Z电压作为形貌信号。此外,低噪声的XY闭环扫描精细化了前后扫描间隙,其大小不超过扫描范围的0.15%。
所有电动台上都配备了编码器,提高了样品定位的重复性。编码的XY台以1 µm分辨率移动,具有2 µm的重复性,编码的Z台以0.1 μm分辨率移动,具有1 μm的重复性。
使用电动样品台,Step-and-Scan 可以实现用户可编程的多区域成像。此自动化功能通过减少重复成像过程中用户的协助来提高生产力。
个性化的头部设计允许从侧面开放式接触样品和探针。可放置在样品台上的样品尺寸取决于所选的 XY 样品台的行程范围,直径可达150 mm x 20 mm或直径200 mm x 20 mm。
原子力显微镜 (AFM) 扫描头沿燕尾轨道快速滑入到位,自动锁定并精准连接到控制电子设备。超发光二极管 (SLD) 提供反射表面的精准成像,并实现精准的皮牛顿力-距离测量,而不干扰可见光谱实验。
定制设计的物镜,具有51 mm 的工作距离和0.21 NA,提供1.0 µm的分辨率和清晰的同轴光学视图。自上而下的直接视图使目标区域的导航变得简易。EL20x 物镜具有20 mm 的工作距离、0.42 NA 和0.7 µm 的分辨率,以增强视野清晰度。更大的 CCD 传感器和软件控制的 LED 光确保了广泛的视野和充足的照明,以精准观察样品。
通过简单地将选项模块插入扩展插槽,可以启用 SPM 模式。NX 系列 AFM 的模块化设计允许其产品线中的选项兼容。
Z stage和聚焦台在保持用户视野清晰的同时,使悬臂与样品表面接触。而且由于聚焦台是电动和软件控制的,它具备透明样品和液体池应用所需的精度。
NX 系列 AFM 采用统一的 NX 电子控制器,24 位高速数字单元提高了 Park 的真正非接触模式的准确性和速度。其低噪声和快速处理非常适合纳米级成像和精准的电学测量,同时嵌入的数字信号处理增强了有效研究的功能性和价值。
Understanding failure modes, failure mechanisms, and root causes is crucial in the manufacturing of semiconductors and electronic devices. Determining the primary cause leading to a failure helps prevent it in the future, and therefore, improves product quality, reduces costs, and improves customer satisfaction. In the semiconductor manufacturing industry, failure analysis is related to the inspection and characterization of local defects on bare wafers, quality assessment of multi-stage processes, or function and performance analyses of finished devices. With the ever-progressing miniaturization of key functional parts of electronic devices, failure analysis is likewise becoming increasingly challenging
With the evolution of nanotechnology, the need to understand nano-scale and sub nano-scale surface properties is becoming increasingly important. Particularly, surface properties such as topography and roughness play an important role in the overall performance of a material. For example, in integrated circuits manufacturing, chemical mechanical polishing (CMP) has been used to control the surface roughness of wafers and other substrates, which directly determines the reliability of final products [1,2]. In semiconductor devices packaging, wafer to wafer bonding quality is determined by the roughness of bonding surfaces. It was found that surfaces with high roughness values introduce voids in the bonded interface, and bonding failure occurs when the roughness exceeds a critical threshold [3]. In the field of scientific research, surface topography can be correlated with other material properties to better understand material behaviors for practical applications [4–6].
The implementation of graphene in devices for nanoelectronics or energy conversion often requires material modifications e.g., via covalent binding or adsorption. However, the local surface inhomogeneities of pristine graphene such as wrinkles can affect the uniformity of these modifications. Therefore, accurate nanoscale characterization of the graphene topography in combination with the material’s functional properties is essential. Atomic force microscopy (AFM) unites real-space topography imaging with the detection of functional surface properties, including the electronic potential, adhesion, and modulus, and thus offers a holistic approach to the nanoscale characterization of graphene and other 2D materials.
Electrical conductivity measurement is an effective approach to describe how a material behaves for certain applications, ranging from energy storage and energy conversion devices, to interconnections in molecular electronics and nanometer-sized semi-conductor devices. A technique known as Conductive Probe Atomic Force Microscopy (C-AFM) is a powerful technique that provides accurate nanoscale measurement and mapping of relative difference in electrical conductivity of advanced materials such as CNTs film. Several characterization techniques were introduced in the past decade to study these materials, however, majority of these can only measure a limited electrical properties range. In this study, Park NX20 equipped with C-AFM was used to investigate 3 different materials with wide range of electrical conductivity. The data acquired in this experiment clearly demonstrate the ability of this technique in measuring wide range of electrical conductivity and differentiating surfaces of materials covered with various types of conductive materials, with the use of a logarithmic current amplifier integrated in the system.